KMP Algorithm
Question¶
Given a text \(txt[0,n-1]\) and a pattern \(pat[0,m-1]\), write a function search(char[] txt, char[] pat)
that prints all occurrences of pat[] within txt[]. You may assume that \(n > m\).
Brute-force¶
public int search(char[] txt, char[] pat) {
int i = 0, j = 0;
while (i < txt.length && j < pat.length) {
if (txt[i] == pat[j]) {
i++;
j++;
} else {
i = i - j + 1;
j = 0;
}
}
if (j == pat.length) {
return i - j;
}
return -1;
}
KMP Algorithm¶
// JAVA program for implementation of KMP pattern searching algorithm`
void KMPSearch(String pat, String txt) {
int m = pat.length();
int n = txt.length();
// create lps[] that will hold the longest prefix suffix values for pattern
int lps[] = new int[m];
int j = 0; // index for p[]
// Preprocess the pattern (calculate lps[] array)
computeLPSArray(pat, m, lps);
int i = 0; // index for s[]
while (i < n) {
if (pat.charAt(j) == txt.charAt(i)) {
j++;
i++;
}
if (j == m) {
System.out.println("Found pattern at index " + (i - j));
j = lps[j - 1];
} else if (i < N && pat.charAt(j) != txt.charAt(i)) { // mismatch after j matches
// Do not match lps[0..lps[j-1]] characters, they will match anyway
if (j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
}
void computeLPSArray(String pat, int m, int lps[]) {
// length of the previous longest prefix suffix
int len = 0;
int i = 1;
lps[0] = 0; // lps[0] is always 0
// the loop calculates lps[i] for i = 1 to m-1
while (i < m) {
if (pat.charAt(i) == pat.charAt(len)) {
len++;
lps[i] = len;
i++;
} else { // (pat[i] != pat[len])
// This is tricky. Consider the example.
// AAACAAAA and i = 7. The idea is similar
// to search step.
if (len != 0) {
len = lps[len - 1];
// Also, note that we do not increment
// i here
} else { // if (len == 0)
lps[i] = len;
i++;
}
}
}
}
// Driver program to test above function`
public static void main(String args[]) {
String txt = "ABABDABACDABABCABAB";
String pat = "ABABCABAB";
KMPSearch(pat, txt);
}